ALL the following apply in this test

1. Equations of statics should be based on a corresponding FBD that is clearly drawn and labeled. Points will be deducted for statics equations that do not have a corresponding FBD or an incomplete/incorrect FBD.
2. Show all your calculations in the solution sheet. Points will be deducted for answers that are not supported by proper calculations.

Name

Problem 1 (25 Points)
The 840-N package A is supported as shown. Determine the tensions in cords DE and DF. Draw the FBDs showing all your results.

Problem 2 (25 Points)

A system of forces consists of a $210-\mathrm{N}$ force \mathbf{P} and two couples as shown. Determine:
a. the resultant moment vector \mathbf{M} of the two couples,
b. the moment of \mathbf{P} about the \mathbf{z}-axis

Problem 3 (25 Points)

Replace system \#1 shown in the figure by an equivalent system \#2 that consists of a single force at A and a couple.
Draw the updated diagram of system \#2 showing all your results.

Problem 4 (25 Points)

Replace system \#1 shown in the figure by an equivalent system \#2 that consists of a single force and specify where its line of action intersects the beam measured from A.
Draw the updated diagram of system \#2 showing all your results.

Problem 1 Solution

A pulley changes the direction of the cable tension but not its magnitude: $T_{C D}=T_{C B}=T_{B A}=W_{A}=840 \mathrm{~N}$ FBD of ring at D :

$$
\begin{align*}
& + \tag{1}\\
+ & F_{x} \tag{2}
\end{align*}=\frac{12}{13} F_{D F}-\frac{3}{5} F_{D E}=00
$$

Solve (1) and (2) to yield: $F_{D F}=520 \mathrm{~N}$ and $F_{D E}=800 \mathrm{~N}$

Problem 2 Solution

a. Let $\overrightarrow{M_{1}}$ be the moment of the 500 N couple and $\overrightarrow{M_{2}}$ be that of the 200 N . Add a zero system $\pm 500 \vec{\jmath}$ at C of coordinates $(0,6,0)$. And add another zero system $\pm 200 \vec{l}$ at C as well. The resultant moment is:

$$
\vec{M}=\overrightarrow{M_{1}}+\overrightarrow{M_{2}}=500(3 \vec{k}+2 \vec{\imath})+200(-6 \vec{k}+2 \vec{\jmath})=1000 \vec{\imath}+400 \vec{\jmath}+300 \vec{k}
$$

b. $\quad \overrightarrow{O F}=3 \vec{\imath}+2 \vec{k} ; \quad \overrightarrow{F C}=-3 \vec{\imath}+6 \vec{\jmath}-2 \vec{k} ; \quad F C=7 m$;

$$
\overrightarrow{M_{P / z}}=\vec{k} \cdot \overrightarrow{M_{P / o}}=\vec{k} \cdot(\overrightarrow{O F} \times \vec{P})=P \vec{k} \cdot\left(\overrightarrow{O F} \times \frac{\overrightarrow{F C}}{F C}\right)=\frac{210}{7}\left|\begin{array}{ccc}
0 & 0 & 1 \\
3 & 0 & 2 \\
-3 & 6 & -2
\end{array}\right|=30 * 18=540 \mathrm{~N} . \mathrm{m}
$$

Problem 3 Solution

$\stackrel{+}{\rightarrow} A_{x}=\sum F_{x}=-\frac{15}{17} 340=-300 N \rightarrow=300 N \leftarrow$
$+\uparrow A_{y}=\sum F_{y}=-\frac{8}{17} 340-400=-560 N \uparrow=560 N \downarrow$
$+\circlearrowleft \sum M_{A}=200+400(2)+160(2)-300(3)=420$ N.m

Problem 4 Solution

The loads may be replaced with the 3 forces shown:

$$
\begin{gathered}
+\downarrow F_{\text {res }}=\sum \mathrm{F}_{\mathrm{y}}=450+1800+300=2550 \mathrm{~N} \\
+\circlearrowright \sum M_{A}=(450 * 1)+(1.5 * 1800)+(4 * 300)=F_{\text {res }} * d \\
d=1.7 \mathrm{~m}
\end{gathered}
$$

